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ABSTRACT 
Healthy ecosystems with intact biodiversity provide human 
societies with valuable services such as clean air and water, storm 
protection, tourism, medicine, food, and cultural resources. 
Protecting this natural capital is one of the great challenges of our 
era. Species extinction and ecological degradation steadily 
continues despite conservation funding of roughly U.S. $20 
billion per year worldwide. Measurements of conservation 
outcomes are often uninformative, hindering iterative 
improvements and innovation in the field. There is cause for 
optimism, however, as recent technological advances in sensor 
networks, big data processing, and machine intelligence can 
provide affordable and effective measures of conservation 
outcomes. We present several working case studies using our 
system, which employs deep learning to empower biologists to 
analyze petabytes of sensor data from a network of remote 
microphones and cameras. This system, which is being used to 
monitor endangered species and ecosystems around the globe, has 
enabled an order of magnitude improvement in the cost 
effectiveness of such projects. This approach can be expanded to 
encompass a greater variety of sensor sources, such as drones, to 
monitor animal populations, habitat quality, and to actively deter 
wildlife from hazardous structures. We present a strategic vision 
for how data-driven approaches to conservation can drive iterative 
improvements through better information and outcomes-based 
funding mechanisms, ultimately enabling increasing returns on 
biodiversity investments.   
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1. INTRODUCTION
Ecosystem services [1], being the contribution of nature to human 
well-being are valued at excess of US$125 trillion per year [2]. 
This includes such diverse services as air and water filtration, crop 
pollination, seafood, medicine, and tourism. Humans, long 
ignorant of how their actions impact ecosystem services, are 
steadily eroding its value to the tune of close to US$1 trillion per 
year [2,3]. In recent decades, multilateral treaties such as the UN-
recognized Convention for Global Biodiversity [4] have 
encouraged nations to increase investment in the conservation of 
biodiversity.  Unfortunately, the current rate of investment, 
estimated at US$20 billion per year [5], has not slowed the rate of 
biodiversity and ecosystem service loss [6].  It has been estimated 

that an order of magnitude greater investment is required just to 
maintain the status quo [7].  

Clearly it is important to direct the limited funds to effective 
solutions. An evidence-based approach to conservation, built on 
rigorous measures of conservation outcomes, can help identify 
techniques that work, point out approaches that are not working as 
planned, facilitate outcomes-based funding and, ultimately, drive 
innovation in the field [8,9,10]. 
Effective wildlife monitoring techniques are a key component of a 
conservation measures program.  However, counting organisms is 
a tricky business [11,12].  The inherent stochasticity of natural 
systems – storms, droughts, diseases – add noise to biological 
surveys.  As a result, many monitoring programs fail to provide 
results with the statistical power needed to measure the 
effectiveness of conservation actions [13,14,15]. Rigorous 
monitoring programs can be expensive and difficult to maintain 
over time.  Better and more cost-effective conservation 
monitoring methods are needed to improve inference and drive 
adaptive management of conservation projects.  

2. TRADITIONAL APPROACH TO
MONITORING

The standard approach to biodiversity monitoring involves 
periodically sending observers to a pre-determined set of survey 
sites to collect data over relatively short survey windows.  
Logistical hurdles, personnel costs, and time constraints make it 
difficult to scale these traditional surveys to meet the increasing 
demands of global conservation. Add to this the fact that repeated 
visits to sensitive habitats by human observers can lead to a host 
of negative ecological impacts and it is not surprising that current 
biodiversity monitoring efforts are typically small, sporadic and 
short-lived.  Thus, typical monitoring efforts suffer from severe 
under sampling of space and time, and sometimes from the 
variable skills and biases of different field workers [16,17]. 
This combination of small sample sizes, stochastic natural 
systems, and fallible human observations can complicate the 
analysis of data from traditional surveys.  Consequently, many 
conservation monitoring efforts provide inconclusive results [15] 
and few can be implemented at scale. 
Our approach to monitoring leverages technological innovations 
to fundamentally improve the quality of conservation monitoring 
and to scale monitoring programs to meet the global need. 
Advances in sensor hardware and big data analytics make it 
possible to survey much larger numbers of sites nearly 
continuously. Using a variety of sensors including microphones, 
cameras (visual, thermal, IR, and hyperspectral), accelerometers, Bloomberg Data for Good Exchange Conference. 
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raw data are collected and transmitted back to a central data store. 
From there, the data may be analyzed with a variety of different 
algorithms. As a whole, we’ve found this approach helps to 
alleviate the sampling, variability, and bias problems associated 
with traditional surveys. Further, the costs are reduced – the cost 
of transporting and sustaining field crews in remote locations is 
instead applied to less frequently serviced sensor hardware. 
The primary challenge for this approach is handling, processing, 
and analyzing the sheer volume of data generated by regional 
sensor networks. This challenge has two components, one being 
the technology infrastructure required to handle big data, and the 
other having to do with the amount of labor required to process 
and analyze the data. 

3. NEW MONITORING TECHNOLOGY  
Rapid advances in technology now offer managers a number of 
tools that can improve conservation monitoring.  For example, 
advances in battery technology, global positioning systems, and 
cellular networks have revolutionized wildlife telemetry and 
added a wealth of information about animal movements at 
continental scales [18,19].  Visual sensor networks and images 
collected by satellites, airplanes, wave gliders, and un-manned 
aerial vehicles have made it easier to track of changes at the 
landscape scale [20,21,22,23,24,25].  These innovations provide 
cost-effective ways to collect biological data at large spatial scales 
over long survey windows, thereby increasing the statistical 
power of these survey efforts.  
However, the rise of cheap and powerful sensors has created an 
ever-increasing data glut.  To be effective, these new tools must be 
coupled with new automated approaches to processing and 
analyzing wildlife data streams. 
Here we describe examples of how we are leveraging advances in 
the areas of big data and deep learning to help researchers extract 
meaningful information from the torrent of new sensor data, and 
improve the adaptive management of natural systems. 

4. DEEP LEARNING FOR 
BIODIVERSITY  
4.1.Big data infrastructure 

We are primarily focused on processing and analyzing large, high-
bit-rate datasets such as audio (high sample rate) and image (large 
amount of data per sample) streams. Other environmental sensor 
data, like temperature or air quality, utilize much lower data rates. 
For example, to record bird vocalizations, we typically record 16-
bit stereo audio at a moderate sample rate of 22,000 samples per 
second (22 kHz) at each monitoring site. In another example, for 
tracking populations of invasive snakes we ingest 2048-by-1536 
8-bit 4:2:2 color images taken at least once every thirty seconds at 
each site.  Data are often collected with a 30% duty cycle over 
each day, and light (lossless or near-lossless) data compression is 
employed. A typical survey point can easily generate more than 5 
gigabytes (GB) of data per day, and an entire monitoring project, 
integrating multiple sites in a region over a multiple-month 
monitoring season, can generate over 50 terabytes (TB) annually. 
We are currently operating dozens of projects worldwide, and will 
be producing petabytes (PB) of data every year as projects scale 
up to the demand.  
Technology infrastructure capable of transmitting, processing, and 
storing this amount of data has only recently become widely 
available and cost effective thanks to advances in the areas of the 
“Internet of Things” (IoT) [26] and cloud computing and storage. 
We have repurposed inexpensive, programmable mobile phones to 

gather and telemeter sensor data from the field [27], and  off-the-
shelf sensor hardware is increasingly equipped with data 
transmission radios and on-board processing capabilities. The 
sensors are configured in a communication network [28], enabling 
data to flow from remote areas into a smaller number of 
accessible base stations. The base stations then transmit data 
through the internet, satellite, microwave, or cell networks, or act 
as data-loggers to be recovered at the end of the survey period. 
Once collected, we store data at a co-located data center using off-
the-shelf computers, and managed and served with freely 
available software including Spark [29]. Third-party data centers 
such as those of Amazon Web Services (AWS) are increasingly 
becoming an option as prices steadily decrease, and we are 
already using this solution for cold-storing data from previous 
field seasons. 

4.2.Data analysis 
With the infrastructure for handling big data becoming 
economically viable, the greater challenge for large-scale wildlife 
monitoring projects is the ability to analyze data to quantify 
events of interest (vocalizations, images of individuals, area 
covered by vegetation type, etc.) in a cost-effective manner. Our 
automated monitoring projects typically collect two orders of 
magnitude more data than would typically be gathered by 
observers in traditional field surveys.  Scaling the number of 
analysts in the lab to manually review these large datasets is not 
viable; instead we have developed techniques to speed up and 
semi-automate the data analysis process. We do this in two ways, 
which are elaborated in the following sections. First, we use 
custom user interfaces (UIs) that can greatly speed up the 
exploration and analysis of the data by a limited number of 
analysts. Second, using machine learning (ML) techniques, such 
as deep learning (DL), we progressively train computational 
models to detect and classify events of interest, and reduce the 
amount of wildlife data reviewed by human analysts by orders of 
magnitude.  

4.2.1.User Interface for Data Exploration 
and Labeling  

In traditional wildlife surveys, field workers are constrained to 
observe multiple events in the environment in real time. In 
contrast, our system presents high probability events in a 
nonlinear-time presentation while also allowing analysis to 
repeatedly review complex or ambiguous events.  We use our 
software to perform three specific tasks: (1) we use tools for audio 
and image data exploration to search for expected species and flag 
unknown or unexpected events, (2) we create labeled datasets to 
train and refine our DL models, and (3) we manually review and 
audit the output of our existing DL models trained to classify 
events of interest. These are addressed below. 
Data exploration 
Data exploration is required at the initial phases of the analysis 
process.  Analysts sort and filter the data according to date ranges, 
time of day, or site location. Additionally and importantly, they 
also apply conditionals regarding the elemental attribues of the 
signals. For example, for audio signals, analysts can sort the data 
frequency ranges, click-like or whistle-like sounds, rising tones or 
falling tones, repetitive pulses, and so on. Visually, one can 
specify fast or slow moving objects, large or small objects, the 
presence of eye-shine, and certain colors. Modalities are 
combined as well. For example, images can be selected according 
to time periods when a specified sound occurs. These exploration 
tools have proven critical for rapidly building datasets to train DL 
models for new species, and for finding novelty in the data for 



which no models yet exist. A roadmap of improvements is 
envisioned for further enhancing analysts' ability to explore and 
search large volumes of sensor data, including providing a richer 
set of elemental signal attributes, a more natural-language 
interface, and also the ability to search by exemplars. 
Other exploration tools are more focused on visualizing the data 

en masse to identify common signal types or anomalies. For 
example, analysts can view and graphically select the data in two-
dimensional (2D) scatter plots and heat maps, according to 
multiple attributes at once, such as frequency range vs. time, or 
object size vs. speed. They can also use state-of-the-art data 
clustering techniques such as t-SNE [30] to view and select data 
samples according similarity to other data samples. Viewing data 
according to such similarity clusters can help alert analysts to the 
recurring and distinct entities or events in the data.  

!  

Figure 2: The use of t-SNE data clustering to 
identify distinct signal types in the data. The 
input is a 384-dimensional feature vector of 
elemental signal descriptors. Data is colored 
according to audit labels, if any. The spectrogram 
panel on the right corresponds to the currently 
selected data point. 

Finally, our software expedites auditing – the manual review of 
classification model output. We run existing DL models against 
our survey data to automatically classify and detect species or 
events of interest for each project. These models output the 
relative probability that an event is from a specific data class 
(usually corresponding to a species or event), and analysts can 
sort the data accordingly. Analysts are then presented with ranked 

pages containing a large number of panels, where each panel 
contains a visualization of an individual data sample. Using 
keyboard shortcuts, the panels are efficiently labeled. For images, 
the visualization consists of image cropping around the object of 
interest, contrast enhancement, and consecutive frame differences. 
For audio, 2D spectrograms of an appropriate duration (e.g., 2 
seconds) are displayed per panel. This gives a visual 
representation of the sound clip; distinct sounds have different 
spectrograms, enabling analysts to quickly learn to visually spot 
sounds of interest when presented with many sounds 
simultaneously on a page. They also have the ability to play the 
audio corresponding to each spectrogram, and view more 
temporal context around it in order to help with their auditing 
decision. 
Periodically, we test the efficacy of UI improvements using A/B 
testing on a small number of projects. For example, when we 
enabled analysts to use keyboard shortcuts to audit multiple soun 
panels on each page, we were able to increase our audit 
throughput by a factor of two.  

4.2.2.Deep Learning for Classification 
and Detection 

Above, we have described how, in order to meet the global scale 
required for effective biodiversity monitoring, the old methods of 
relying on workers in the field must be augmented with large scale 
sensor networks that generate petabytes, growing to exabytes, of 
data each year. We have summarized how innovations in big data 
infrastructure and analysis UI can be used to support this data 
load. The most critical piece, however, is the need for Artificial 
Intelligence (AI) and ML approaches to reduce the amount of data 
human analysts need to review to measure the changes in 
biodiversity (both positive and negative) with greater precision 
than traditional techniques. 

Figure 1: The representation of sounds by spectrograms allowing analysts to view multiple sounds at 
once for fast auditing



The specific subfield of ML that we have invested in is known as 
Deep Learning (DL) [31]. DL is a quickly growing and vibrant 
field; here we summarize our use of DL and postulate how 
biodiversity monitoring can be improved using various properties 
of DL algorithms. 
DL grew out of the fields of representation learning, neural 
networks, and computational neuroscience. It employs trainable 
computational models composed of a potentially large stack of 
processing layers. Each layer learns a more abstract representation 
of the data based on the more elementary representation in the 
previous layer. For instance, in image recognition, the first layer 
commonly represents any image by its low level visual features 
such as local edges or gradients. Subsequent layers can be seen to 
combine these low level features in various combinations to form 
corners or textures. In the deepest layers, semantic representations 
are formed related to the specific task at hand. For example, in 
face recognition, there forms a representation of eyes and noses, 
and then combinations of those in various geometric relationships, 
all based on the lower level representations learned in previous 
layers. These models are completely trainable from data, usually 
in a supervised fashion, such that the learning algorithm (usually 
stochastic gradient decent), is told what the desired output is for 
each input data sample.  
The great excitement about DL in recent years is largely a tribute 
to the fact that it has enabled surprisingly large improvements in 
such disparate industrial applications as visual object recognition, 

speech recognition, and genomics. As such, AI algorithm 
development is shifting from programs hand-written by domain 
experts, to training machines by examples – often millions of data 
points in the case of difficult problems such as unconstrained 
image recognition [32]. The major enablers for the success of DL 
have been the availability of large amounts of data, and the 
corresponding computational infrastructure required by the 
learning algorithms. In comparison to other ML algorithms, the 
performance of a DL algorithm scales very well with the number 
of training examples and the amount of compute cycles can be 
applied. 
The biodiversity monitoring application that we have outlined is a 
prime candidate for application of DL, due to availability of large 
amounts of labeled data produced by the analysts using our UI. 

Moreover, there is a precedent for success in the application of DL 
in difficult audio and visual recognition problems.  
Thus far, leveraging our past experience in DL for consumer 
applications, we have applied DL straightforwardly to our sensor 
data to great effect. We have employed deep convolutional neural 
networks (CNNs) and deep feed forward neural networks (DNNs) 
to audio spectrogram and image data, mostly to classify the 
presence or absence and activity rates of a number of different 
endangered species, or in some cases, the sounds of birds 
colliding with energy infrastructure. In total, we have the ability to 
classify dozens of species signals and event types across our 
ongoing projects, and we aim to scale this up to encompass whole 
communities. Depending on the sensor type and the species, we 
have experienced a 100x to 1000x reduction in the amount of data 
required to be manually reviewed, when integrated with our 
auditing UI and our back-end power analysis. 
We see a long and exciting roadmap of DL-based improvements 
applied to biodiversity monitoring, leveraging various desirable 
properties of DL algorithms. This includes the property of transfer 
learning [33], in which, for example, models trained for a given 
species might be used to improve the results on other related 
species that might have less training data available for it. Also, the 
concept of a joint embedding space [34] might be used to improve 
the natural language interface to our auditing and exploration UI, 
as well as to combine multiple types of sensors (e.g., audio and 
image) into a single model that outperforms each individual 

sensor modality. 

5. CASE STUDIES 

5.1.Detecting rare species 
Not surprisingly, rare and endangered organisms can be hard to 
detect and count in the real world, complicating monitoring efforts 
when information on population trends is most critical.  The costs 
and logistical constraints of fielding well-trained surveyors to 
search for these species in isolated and ecologically sensitive 
habitat patches, is generally prohibitive.  As a result, only a small 
fraction of the species on the U.S. endangered species list or 
International Union for Conservation RedList are monitored on a 
regular basis.  To make matters worse, the over-abundance of zero 



counts (i.e. surveys where no individuals were observed) makes 
surveys less statistically robust complicating inference [12]. 
Finally, human observers may further complicate matters by 
missing or misidentifying species in the field [16].   
Automated approaches to wildlife monitoring, can help to 
overcome many of these challenges.  First, small cheap sensors 
can increase the spatial and temporal scale of wildlife surveys, 
increasing the probability that individuals will be detected.  This 
added survey effort can be achieved at a fraction of the cost of 
equivalent traditional survey effort.  The increased survey effort 
increases statistical power facilitating inference about the status of 
endangered species, or the effectiveness of management actions.  
Finally, automated data streams can be archived and re-analyzed 
in the future to correct errors or ask new questions.  Traditional 

surveys are typically not re-producible.  
For example, our automated monitoring approach was a critical 
tool that helped our collaborators in the Channel Islands National 
Park detect the first nest of a threatened seabird on Anacapa Island 
(Ashy Storm-petrel, Oceanodroma homochroa) ten years after the 
removal of invasive predators [35].  Acoustic monitoring was also 
a key tool that helped collaborators in Japan detect the first known 
breeding site for Bryans Shearwater (Puffinus bryani) a newly 
discovered species [36] (see Figure 2).  

5.2.Monitoring populations through 
time 

As natural habitats become more fragmented by human 
development, species that are currently common may begin to 
decline. Automated monitoring approaches carried out over 
regional scales can improve the power of long-term monitoring 
programs to detect population trends. This, in turn, can provide 
managers and policy makers with early warnings that species are 
in in decline and can initiate mitigation before species become 
endangered.   

We are working with wildlife agencies in Queensland, Australia 
and the U.S. to test and deploy regional scale automated 
monitoring projects in the Great Barrier Reef Marine Park, and 
the California Coastal National Monument, reserves spread over 
huge spatial scales.  Pilot work in Australia has confirmed that our 
automated approach can provide population data with the required 
statistical power at a lower cost than the traditional approach. 

5.3.Detecting invasive species 
Introduced species, such as non-native predators, can drive native 
species to extinction, such as occurred with eleven of the forest 
bird species native to the Island of Guam in Micronesia. The agent 
of this destruction was the brown tree snake (Boiga irregularis), a 
native of Papua New Guinea inadvertently introduced by the U.S. 
military after World War II. Management efforts have so far been 
unable to eradicate the species from Guam [37], [38].  Measuring 
the effects of these management actions, and increasing 
biosecurity monitoring efforts on other Pacific islands could 
benefit from automated sensors placed at ports and airports.  In 
addition, automated approaches could help rapid response teams 
assess the extent of any new invasion when it occurs, and enabling 
these teams to better estimate the probability that they have 

eliminated the threat before the snakes become established.  We 
are collaborating with researchers at the U.S. Geological Survey 
to test automated recognition of these snakes in time-lapse images 
collected from camera sensors on Guam. . 

6. CONCLUSION 
Evidence-based approaches are transforming healthcare, 
technology development, and financial management. This 
approach can also improve the way we spend our limited 
conservation dollars.  The inherent challenges of finding and 
counting biodiversity in the natural world have so-far hampered 
many efforts to monitor conservation outcomes. We have shown 
that new monitoring approaches based on electronic sensors, 
machine learning, and big data analytics can dramatically improve 
wildlife monitoring projects. More robust monitoring data can, in 
turn, improve efforts to evaluate conservation outcomes, 
identifying techniques that work, as well as those that nee d 
refinement. 
Our deep learning approach has allowed us to scale projects by an 
order of magnitude while maintaining costs. For example, the 
technique allowed one client to grow the scale of a key project by 
two orders of magnitude from 600 hours of monitoring in the 
summer of 2012 to almost 80,000 hours of monitoring in the 
summer of 2014.  This effort has transformed their understanding 
of wildlife impacts, and doubled the funding for mitigation and 
monitoring efforts in the area. 
As the field develops, we expect that landscape scale automated 
sensor networks will provide real-time data for assessing the 
health of natural communities, and measuring the success or 
shortcomings of conservation efforts, allowing data to drive 
iterative improvements in the field. 
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